148 research outputs found

    Within-Breath Analysis of Respiratory Mechanics in Asthmatic Patients by Forced Oscillation

    Get PDF
    INTRODUCTION: The within-breath analysis of respiratory mechanics by the monofrequency Forced Oscillation Technique (mFOT) is of great interest in both physiopathology studies and the diagnosis of respiratory diseases. However, there are limited data on the use of this technique in the analysis of asthma. This study evaluates within-breath mechanics of asthmatic individuals and the contribution of the mFOT in the asthma diagnosis. METHODS: Twenty-two healthy and twenty-two asthmatic subjects, including patients with mild (n=8), moderate (n=8), and severe (n=6) obstruction, were studied. Forced Oscillation Technique data were interpreted using the mean respiratory impedance (Zt), the impedance during inspiration (Zi), expiration (Ze), at the beginning of inspiration (Zii), and at expiration (Zie). The peakto-peak impedance (Zpp) was also calculated by the subtraction of Zii from Zie. Receiver operating characteristic curves were used to determine the sensitivity (Se) and specificity (Sp) of m Forced Oscillation Technique parameters in identifying asthma. RESULTS: Respiratory impedance values were significantly higher in asthmatics: Zt (p<0.001), Zi (p<0.001), Ze (p<0.001), Zii (p<0.001), Zie (p<0.001), and Zpp (p<0.003). The best parameters for detecting asthma were Zi, Zii, and Zie (Se=90.9%, Sp=90.9%), followed by Zt and Ze. These results are in close agreement with recently published theories and pathophysiological fundamentals. CONCLUSIONS: mFOT permits a non-invasive and detailed analysis in different phases of the respiratory cycle, providing parameters that are adequate for the diagnosis of asthma with high accuracy. These results confirm the high clinical and scientific potential of this methodology in the evaluation of asthmatic patients

    Total inspiratory and expiratory impedance in patients with severe chronic obstructive pulmonary disease

    Get PDF
    OBJECTIVES: Several studies have confirmed the high potential of the forced oscillation technique for the assessment of respiratory modifications related to chronic obstructive pulmonary disease. However, most of these studies did not employ within-breath analyses of the respiratory system. The aim of this study is to analyze respiratory impedance alterations in different phases of the respiratory cycle of chronic obstructive pulmonary disease patients and to evaluate their clinical use. METHODS: 39 individuals were evaluated, including 20 controls and 19 individuals with chronic obstructive pulmonary disease who experienced severe airway obstruction.Weevaluated the mean respiratory impedance (Zm) as well as values for inspiration (Zi) and expiration cycles (Ze), at the beginning of inspiration (Zbi) and expiration (Zbe). The peak-to-peak impedance (Zpp), and the impedance change (DZrs) were also analyzed. The clinical usefulness was evaluated by investigating the sensibility, specificity and the area under the receiver operating characteristic curve. RESULTS: The respiratory impedance increased in individuals with chronic obstructive pulmonary disease in all of the studied parameters (Zm, Zi, Ze, Zbi, Zbe, DZrs and Zpp). These changes were inversely associated with spirometric parameters. Higher impedanceswere observed in the expiratory phase of individualswith chronic obstructive pulmonary disease. All of the studied parameters, except for DZrs (area under the receiver operating characteristic ,0.8), exhibited high accuracy for clinical use (area under the receiver operating characteristic .0.90; Sensibility 0.85;Sp 0.85; Sp 0.85). CONCLUSIONS: The respiratory alterations in severe chronic obstructive pulmonary disease may be identified by the increase in respiratory system impedance, which is more evident in the expiratory phase. These results confirm the potential of within-breath analysis of respiratory impedance for the assessment of respiratory modifications related to chronic obstructive pulmonary disease

    Oscillation mechanics of the respiratory system in never-smoking patients with silicosis: pathophysiological study and evaluation of diagnostic accuracy

    Get PDF
    OBJECTIVES: Silicosis is a chronic and incurable occupational disease that can progress even after the cessation of exposure. Recent studies suggest that the forced oscillation technique may help to clarify the changes in lung mechanics resulting from silicosis as well as the detection of these changes. We investigated the effects of airway obstruction in silicosis on respiratory impedance and evaluated the diagnostic efficacy of the forced oscillation technique in these patients. METHODS: Spirometry was used to classify the airway obstruction, which resulted in four subject categories: controls (n=21), patients with a normal exam (n=12), patients with mild obstruction (n=22), and patients with moderate-to-severe obstruction (n=12). Resistive data were interpreted using the zero-intercept resistance (R0), the resistance at 4 Hz (Rrs4), and the mean resistance. We also analyzed the mean reactance (Xm) and the dynamic compliance. The total mechanical load was evaluated using the absolute value of the respiratory impedance (Z4Hz). The diagnostic potential was evaluated by investigating the area under the receiver operating characteristic curve. ClinicalTrials.gov: NCT01725971. RESULTS: We observed significant (

    Severity classification for idiopathic pulmonary fibrosis by using fuzzy logic

    Get PDF
    OBJECTIVE: To set out a severity classification for idiopathic pulmonary fibrosis (IPF) based on the interaction of pulmonary function parameters with high resolution computed tomography (CT) findings. INTRODUCTION: Despite the contribution of functional and radiological methods in the study of IPF, there are few classification proposals for the disease based on these examinations. METHODS: A cross-sectional study was carried out, in which 41 non-smoking patients with IPF were evaluated. The following high resolution CT findings were quantified using a semi-quantitative scoring system: reticular abnormality, honeycombing and ground-glass opacity. The functional variables were measured by spirometry, forced oscillation technique, helium dilution method, as well as the single-breath method of diffusing capacity of carbon monoxide. With the interaction between functional indexes and high resolution CT scores through fuzzy logic, a classification for IPF has been built. RESULTS: Out of 41 patients studied, 26 were male and 15 female, with a mean age of 70.8 years. Volume measurements were the variables which showed the best interaction with the disease extension on high resolution CT, while the forced vital capacity showed the lowest estimative errors in comparison to total lung capacity. A classification for IPF was suggested based on the 95% confidence interval of the forced vital capacity %: mild group (>92.7); moderately mild (76.9-92.6); moderate (64.3-76.8%); moderately severe (47.1-64.2); severe (24.3-47.0); and very severe (<24.3). CONCLUSION: Through fuzzy logic, an IPF classification was built based on forced vital capacity measurement with a simple practical application

    Forced oscillation technique in the detection of smoking‐induced respiratory alterations: diagnostic accuracy and comparison with spirometry

    Get PDF
    INTRODUCTION: Detection of smoking effects is of utmost importance in the prevention of cigarette-induced chronic airway obstruction. The forced oscillation technique offers a simple and detailed approach to investigate the mechanical properties of the respiratory system. However, there have been no data concerning the use of the forced oscillation technique to evaluate respiratory mechanics in groups with different degrees of tobacco consumption. OBJECTIVES: (1) to evaluate the ability of the forced oscillation technique to detect smoking-induced respiratory alterations, with special emphasis on early alterations; and (2) to compare the diagnostic accuracy of the forced oscillation technique and spirometric parameters. METHODS: One hundred and seventy subjects were divided into five groups according to the number of pack-years smoked: four groups of smokers classified as <20, 20-39, 40-59, and >60 pack-years and a control group. The four groups of smokers were compared with the control group using receiver operating characteristic (ROC) curves. RESULTS: The early adverse effects of smoking in the group with <20 pack-years were adequately detected by forced oscillation technique parameters. In this group, the comparisons of the ROC curves showed significantly better diagnostic accuracy (p<0.01) for forced oscillation technique parameters. On the other hand, in groups of 20-39, 40-59, and >60 pack-years, the diagnostic performance of the forced oscillation technique was similar to that observed with spirometry. CONCLUSIONS: This study revealed that forced oscillation technique parameters were able to detect early smoking-induced respiratory involvement when pathologic changes are still potentially reversible. These findings support the use of the forced oscillation technique as a versatile clinical diagnostic tool in helping with chronic obstructive lung disease prevention, diagnosis, and treatment

    Evaluating the forced oscillation technique in the detection of early smoking-induced respiratory changes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early detection of the effects of smoking is of the utmost importance in the prevention of chronic obstructive pulmonary disease (COPD). The forced oscillation technique (FOT) is easy to perform since it requires only tidal breathing and offers a detailed approach to investigate the mechanical properties of the respiratory system. The FOT was recently suggested as an attractive alternative for diagnosing initial obstruction in COPD, which may be helpful in detecting COPD in its initial phases. Thus, the purpose of this study was twofold: (1) to evaluate the ability of FOT to detect early smoking-induced respiratory alterations; and (2) to compare the sensitivity of FOT with spirometry in a sample of low tobacco-dose subjects.</p> <p>Methods</p> <p>Results from a group of 28 smokers with a tobacco consumption of 11.2 ± 7.3 pack-years were compared with a control group formed by 28 healthy subjects using receiver operating characteristic (ROC) curves and a questionnaire as a gold standard. The early adverse effects of smoking were adequately detected by the absolute value of the respiratory impedance (<it>Z4Hz</it>), the intercept resistance (<it>R0</it>), and the respiratory system dynamic compliance (<it>Crs, dyn</it>). <it>Z4Hz </it>was the most accurate parameter (Se = 75%, Sp = 75%), followed by <it>R0 </it>and <it>Crs, dyn</it>. The performances of the FOT parameters in the detection of the early effects of smoking were higher than that of spirometry (p < 0.05).</p> <p>Conclusion</p> <p>This study shows that FOT can be used to detect early smoking-induced respiratory changes while these pathologic changes are still potentially reversible. These findings support the use of FOT as a versatile clinical diagnostic tool in aiding COPD prevention and treatment.</p

    Influence of the Ageing Process on the Resistive and Reactive Properties of the Respiratory System

    Get PDF
    INTRODUCTION: In an increasingly old society, the study of the respiratory system changes and new techniques dedicated to older patients are of interest in physiologic studies as well as in the diagnosis of respiratory diseases. OBJECTIVES: (1) To investigate the impact of ageing on the resistive and reactive properties of the respiratory system, and (2) to compare the easiness of accomplishment of spirometry and forced oscillation for assessing lung function. METHODS: We conducted a cross-sectional study in which forced oscillation was used to investigate respiratory system resistive and reactive properties, while spirometry was used as a reference test to evaluate 80 normal subjects aged between 20 and 86 years. A questionnaire was used to evaluate the easiness of accomplishment of spirometry and forced oscillation. RESULTS: There was a significant increase in the respiratory system resonance frequency (p<0.003) and a reduction in the mean reactance (p<0.004) with increasing age. Respiratory system resistance and dynamic compliance were not related to the ageing process. The easiness of accomplishment of forced oscillation measurements was greater than that of spirometry. This result was particularly relevant in subjects over 70 years old (p<0.05). CONCLUSIONS: Respiratory system resistance and dynamic compliance are not modified with ageing. On the other hand, respiratory system homogeneity decreases during the ageing process. Forced oscillation is easy to perform and provides information complementary to spirometry. This technique may be a promising alternative and/or complement to other conventional exams used to evaluate older people who are unable to adequately perform spirometric tests

    Within-breath respiratory impedance and airway obstruction in patients with chronic obstructive pulmonary disease

    Get PDF
    OBJECTIVE: Recent work has suggested that within-breath respiratory impedance measurements performed using the forced oscillation technique may help to noninvasively evaluate respiratory mechanics. We investigated the influence of airway obstruction on the within-breath forced oscillation technique in smokers and chronic obstructive pulmonary disease patients and evaluated the contribution of this analysis to the diagnosis of chronic obstructive pulmonary disease. METHODS: Twenty healthy individuals and 20 smokers were assessed. The study also included 74 patients with stable chronic obstructive pulmonary disease. We evaluated the mean respiratory impedance (Zm) as well as values for the inspiration (Zi) and expiration cycles (Ze) at the beginning of inspiration (Zbi) and expiration (Zbe), respectively. The peak-to-peak impedance (Zpp=Zbe-Zbi) and the respiratory cycle dependence (ΔZrs=Ze-Zi) were also analyzed. The diagnostic utility was evaluated by investigating the sensitivity, the specificity and the area under the receiver operating characteristic curve. ClinicalTrials.gov: NCT01888705. RESULTS: Airway obstruction increased the within-breath respiratory impedance parameters that were significantly correlated with the spirometric indices of airway obstruction (R=−0.65,

    Contrasting diagnosis performance of forced oscillation and spirometry in patients with rheumatoid arthritis and respiratory symptoms

    Get PDF
    OBJECTIVES: Pulmonary involvement in rheumatoid arthritis is directly responsible for 10% to 20% of all mortality. The best way to improve the prognosis is early detection and treatment. The forced oscillation technique is easy to perform and offers a detailed exam, which may be helpful in the early detection of respiratory changes. This study was undertaken to (1) evaluate the clinical potential of the forced oscillation technique in the detection of early respiratory alterations in rheumatoid arthritis patients with respiratory complaints and (2) to compare the sensitivity of forced oscillation technique and spirometric parameters. METHODS: A total of 40 individuals were analyzed: 20 healthy and 20 with rheumatoid arthritis (90% with respiratory complaints). The clinical usefulness of the parameters was evaluated by investigating the sensibility, the specificity and the area under the receiver operating characteristic curve. ClinicalTrials.gov: NCT01641705. RESULTS: The early adverse respiratory effects of rheumatoid arthritis were adequately detected by the forced oscillation technique parameters, and a high accuracy for clinical use was obtained (AUC.0.9, Se = 80%, Sp = 95%). The use of spirometric parameters did not obtain an appropriate accuracy for clinical use. The diagnostic performance of the forced oscillation technique parameters was significantly higher than that of spirometry. CONCLUSIONS: The results of the present study provide substantial evidence that the forced oscillation technique can contribute to the easy identification of initial respiratory abnormalities in rheumatoid arthritis patients that are not detectable by spirometric exams. Therefore, we believe that the forced oscillation technique can be used as a complementary exam that may help to improve the treatment of breathing disorders in rheumatoid arthritis patients
    corecore